

>>>>>

BEST **IIT & JEE MATERIAL** Revised as per CBSE

MATHS CLASS 11 THEORY

lo.

 $\rangle\rangle\rangle\rangle$

GIIT_GURUKUL_OFFICIAL

9004567771, 8999978871

Contact

 $\rangle\rangle\rangle\rangle$

Szigurukul1@gmail.com

(ii) https://igurukul.in/

1001, Kamdhenu, Commerze Kharghar, **Nerul Seawood**

IIT GURUKUL PRACTICE CENTER

 $\rangle\rangle\rangle\rangle$

SEQUENCE AND SERIES \bullet

SEQUENCE

A succession of terms a_1, a_2, a_3, a_4 formed according to some rule or law.

Examples are : 1, 4, 9, 16, 25

 $-1, 1, -1, 1, \ldots$ $\frac{x}{1!}, \frac{x^2}{2!}, \frac{x^3}{3!}, \frac{x^4}{4!}, \dots$

REAL SEQUENCE

A sequence whose range is a subset of R is called a real sequence.

-
- E.g. (i) $2, 5, 8, 11, \dots$ (ii) $4, 1, -2, -5, \dots$
	- (iii) $3, -9, 27, -81, \dots$

A finite sequence has a finite (i.e. limited) number of terms. An infinite sequence has an unlimited number of terms, i.e. there is no last term.

SERIES

The indicated sum of the terms of a sequence. In the case of a finite sequence $a_1, a_2, a_3, \ldots, a_n$ the corresponding

series is $a_1 + a_2 + a_3 + \dots + a_n =$ n $\sum_{k=1}^{\mathbf{d}_{k}}$ a_k . $\sum_{k=1}^{\infty} a_k$. This series has a finite or limited number of terms and is called a finite series.

PROGRESSION

The word progression refers to sequence or series – finite or infinite

Arithmetic Progression (A.P.)

A.P. is a sequence whose terms differ by a fixed number. This fixed number is called the common difference. If a is the first term $\&$ d the common difference, then A.P. can be written as

 $a, a+d, a+2d, \dots, a+(n-1)d, \dots$

(a)
$$
n^{th}
$$
 term of AP $T_n = a + (n-1)d$, where $d = t_n - t_{n-1}$

(b) The sum of the first n terms :
$$
S_n = \frac{n}{2}[a + \ell] = \frac{n}{2}[2a + (n-1)d]
$$

where l is the last term.

- (i) $nth term of an A.P. is of the form $An + B$ i.e. a linear expression in 'n', in such a case the coefficient of n is the common$ difference of the A.P. i.e. A.
- (ii) Sum of first 'n' terms of an A.P. is of the form $An^2 + Bn$ i.e. a quadratic expression in 'n', in such case the common difference is twice the coefficient of n^2 . i.e. $2A$
- (iii) Also nth term $T_n = S_n S_{n-1}$
- **Ex.** If t_{54} of an A.P. is 61 and $t_4 = 64$, find t_{10} .
- Sol. Let a be the first term and d be the common difference

so
$$
t_{54} = a + 53d = -61
$$
(i)
\nand $t_4 = a + 3d = 64$ (ii)
\nequation (i) – (ii) we get
\n \Rightarrow 50d = -125
\n $d = -\frac{5}{2}$
\n \Rightarrow $a = \frac{143}{2}$ So $t_{10} = \frac{143}{2} + 9(-\frac{5}{2}) = 49$

- Ex. If $(x + 1)$, 3x and $(4x + 2)$ are first three terms of an A.P. then find its 5th term.
- Sol. $(x+1), 3x, (4x+2)$ are in AP

$$
\Rightarrow \quad 3x - (x+1) = (4x+2) - 3x \quad \Rightarrow \quad x = 3
$$

\n
$$
\therefore \quad a = 4, d = 9 - 4 = 5 \quad \Rightarrow \quad T_5 = 4 + 4(5) = 24
$$

- Ex. Find the sum of all natural numbers divisible by 5, but less than 100.
- Sol. All those numbers are 5, 10, 15, 20,, 95. Here $a = 5$, $n = 19 & 1 = 95$
	- So $S = \frac{19}{2} (5 + 95) = 950.$
- Ex. The sum of first n terms of two A.Ps. are in ratio $\frac{7n+1}{4n+27}$ $^{+}$ *n* $\frac{n+1}{n+27}$. Find the ratio of their 11th terms.
- $^{+}$ Sol. Let a_1 and a_2 be the first terms and d_1 and d_2 be the common differences of two A.P.s respectively then

$$
\frac{\frac{n}{2}[2a_1 + (n-1)d_1]}{\frac{n}{2}[2a_2 + (n-1)d_2]} = \frac{7n+1}{4n+27} \implies \frac{a_1 + \left(\frac{n-1}{2}\right)d_1}{a_2 + \left(\frac{n-1}{2}\right)d_2} = \frac{7n+1}{4n+27}
$$

For ratio of $11th$ terms

$$
\frac{n-1}{2} = 10 \qquad \Rightarrow \qquad n = 21
$$

so ratio of 11th terms is $\frac{7(21)+1}{4(21)+27} = \frac{148}{111} = \frac{4}{3}$

Properties of A.P.

- (i) The first term and common difference can be zero, positive or negative (or any complex number.)
- (ii) If a, b, c are in A.P. \Rightarrow 2 b = a + c & if a, b, c, d are in A.P. \Rightarrow a + d = b + c.
- (iii) Three numbers in A.P. can be taken as $a-d$, a , $a+d$; four numbers in A.P. can be taken as $a - 3d$, $a - d$, $a + d$, $a + 3d$; five numbers in A.P. are $a - 2d$, $a - d$, a , $a + d$, $a + 2d$; six terms in A.P. are $a - 5d$, $a - 3d$, $a - d$, $a + d$, $a + 3d$, $a + 5d$ etc.
- (iv) The sum of the terms of an A.P. equidistant from the beginning & end is constant and equal to the sum of first & last terms.
- (v) Any term of an A.P. (except the first) is equal to half the sum of terms which are equidistant from it.

$$
a_n = 1/2 (a_{n-k} + a_{n+k}), k < n. \text{ For } k = 1, a_n = (1/2) (a_{n-1} + a_{n+1});
$$

for $k = 2$, $a_n = (1/2) (a_{n-2} + a_{n+2})$ and so on.

140

- (vi) If each term of an A.P. is increased, decreased, multiplied or divided by the same non-zero number, then the resulting sequence is also an AP.
- (vii) The sum and difference of two AP's is an AP.
- (viii) kth term from the last = $(n k + 1)th$ term from the beginning.
- Ex. Four numbers are in A.P. If their sum is 20 and the sum of their squares is 120, then find the middle terms.
- Sol. Let the numbers are $a 3d$, $a d$, $a + d$, $a + 3d$

given, $a-3d+a-d+a+d+a+3d=20$ \implies $4a=20 \implies a=5$ and $(a-3d)^2 + (a-d)^2 + (a+d)^2 + (a+3d)^2 = 120$ \implies $4a^2$ $+20d^2=120$ \Rightarrow 4 × 5² + 20d² = 120 \Rightarrow $12 = 1$ **F** $1 =$

$$
\Rightarrow d^2 = 1 \text{ p d} = \pm 1
$$

Hence numbers are 2, 4, 6, 8

Ex. If $a_1, a_2, a_3, \dots, a_n$ are in A.P. where $a_i > 0$ for all i, show that :

$$
\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + \dots + \frac{1}{\sqrt{a_{n-1}} + \sqrt{a_n}} = \frac{(n-1)}{\sqrt{a_1} + \sqrt{a_n}}
$$

\nSol. L.H.S.
$$
= \frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + \dots + \frac{1}{\sqrt{a_{n-1}} + \sqrt{a_n}}
$$

$$
= \frac{1}{\sqrt{a_2} + \sqrt{a_1}} + \frac{1}{\sqrt{a_3} + \sqrt{a_2}} + \dots + \frac{1}{\sqrt{a_n} + \sqrt{a_{n-1}}}
$$

$$
= \frac{\sqrt{a_2} - \sqrt{a_1}}{(a_2 - a_1)} + \frac{\sqrt{a_3} - \sqrt{a_2}}{(a_3 - a_2)} + \dots + \frac{\sqrt{a_n} - \sqrt{a_{n-1}}}{a_n - a_{n-1}}
$$

Let 'd' is the common difference of this A.P.

then
Now $a_1 = a_3 - a_2 = \dots = a_n - a_{n-1} = d$ L.H.S.

$$
= \frac{1}{d} \left\{ \sqrt{a_2} - \sqrt{a_1} + \sqrt{a_3} - \sqrt{a_2} + \dots + \sqrt{a_{n-1}} - \sqrt{a_{n-2}} + \sqrt{a_n} - \sqrt{a_{n-1}} \right\} = \frac{1}{d} \left\{ \sqrt{a_n} - \sqrt{a_1} \right\}
$$

$$
= \frac{a_n - a_1}{d \left(\sqrt{a_n} + \sqrt{a_1} \right)} = \frac{a_1 + (n-1)d - a_1}{d \left(\sqrt{a_n} + \sqrt{a_1} \right)} = \frac{1}{d} \frac{(n-1)d}{\left(\sqrt{a_n} + \sqrt{a_1} \right)} = \frac{n-1}{\sqrt{a_n} + \sqrt{a_1}} = R.H.S.
$$

Geometric Progression (G.P.)

G.P. is a sequence of non zero numbers each of the succeeding term is equal to the preceeding term multiplied by a constant. Thus in a GP the ratio of successive terms is constant. This constant factor is called the COMMON RATIO of the sequence $\&$ is obtained by dividing any term by the immediately previous term. Therefore a, ar, ar², ar³, ar⁴, is a GP with 'a' as the first term $\&$ 'r' as common ratio.

(a) n^{th} term; $T_n = a r^{n-1}$

(b) Sum of the first n terms;
$$
S_n = \frac{a(r^n - 1)}{r - 1}
$$
, if $r \ne 1$

(c) Sum of infinite G.P.,
$$
S_{\infty} = \frac{a}{1-r}
$$
; $0 < |r| < 1$

 $t_n = ar^{n-1} = 7(r)^{n-1} = 448.$

Sol. Given $a = 7$

Ex. If the first term of G.P. is 7, its nth term is 448 and sum of first n terms is 889, then find the fifth term of G.P.

$$
\Rightarrow 7r^{n} = 448 r
$$

\nAlso $S_{n} = \frac{a(r^{n} - 1)}{r - 1} = \frac{7(r^{n} - 1)}{r - 1}$
\n
$$
\Rightarrow 889 = \frac{448r - 7}{r - 1} \Rightarrow r = 2
$$

\nHence $T_{5} = ar^{4} = 7(2)^{4} = 112$.
\nEx. Let $S = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$, find the sum of
\n(i) first 20 terms of the series\n(ii) infinite terms of the series.
\nSoI. (i) $S_{20} = \frac{\left(1 - \left(\frac{1}{2}\right)^{20}\right)}{1 - \frac{1}{2}} = \frac{2^{20} - 1}{2^{19}}$ \n(ii) $S_{\infty} = \frac{1}{1 - \frac{1}{2}} = 2$.

Properties of G.P.

- (a) If each term of a G.P. be multiplied or divided by the some non-zero quantity, then the resulting sequence is also a G.P.
- (b) Three consecutive terms of a GP : a/r , a , ar ;
	- Four consecutive terms of a GP : , a/r , ar, ar^3 & so on.
- (c) If a, b, c are in G.P. then b^2 = ac.
- (d) If in a G.P, the product of two terms which are equidistant from the first and the last term, is constant and is equal to the product of first and last term. \Rightarrow T_k . T_{n-k+1} = constant = a.l
- (e) If each term of a G.P. be raised to the same power, then resulting sequence is also a G.P.

(f) In a G.P.,
$$
T_r^2 = T_{r-k}
$$
. T_{r+k} , $k \le r, r \ne 1$

- (g) If the terms of a given G.P. are chosen at regular intervals, then the new sequence is also a G.P.
- (h) If $a_1, a_2, a_3, \ldots, a_n$ is a G.P. of positive terms, then $\log a_1$, $\log a_2, \ldots, \log a_n$ is an A.P. and vice-versa.

(i) If
$$
a_1, a_2, a_3,...
$$
 and $b_1, b_2, b_3,...$ are two G.P.'s then $a_1b_1, a_2b_2, a_3b_3,...$ & $\frac{a_1}{b_1}, \frac{a_2}{b_2}, \frac{a_3}{b_3},...$ is also in G.P.

- Ex. Find three numbers in G.P. having sum 19 and product 216.
- **Sol.** Let the three numbers be $\frac{a}{a}$ $\frac{1}{r}$, a, ar

so $a\left[\frac{1}{r}+1+r\right] = 19$ (i) and $a^3 = 216$ \implies $a = 6$ so from (i) $6r^2 - 13r + 6 = 0$. \Rightarrow $r = \frac{3}{2}, \frac{2}{3}$ 3

Hence the three numbers are 4, 6, 9.

Harmonic Progression (H.P.)

A sequence is said to be in H.P. if the reciprocal of its terms are in AP. If the sequence $a_1, a_2, a_3, \ldots, a_n$ is an HP then $1/a_1$, $1/a_2$, $\ldots, 1/a_n$ is an AP. Here we do not have the formula for the sum of the n terms of an HP. The general form of a harmonic progression is $\frac{1}{a}$, $\frac{1}{a+d}$, $\frac{1}{a+d}$, $\frac{1}{a+2d}$, $\frac{1}{a+(n-1)d}$ No term of any H.P. can be zero.

(a) Here we do not have the formula for the sum of the n terms of an H.P.. For H.P. whose first term is a and second

term is b, the nth term is $t_n = \frac{ab}{b + (n-1)(a-b)}$.

(i) If a, b, c are in H.P.
$$
\Rightarrow
$$
 $b = \frac{2ac}{a+c}$ or $\frac{a}{c} = \frac{a-b}{b-c}$.
\n(ii) If a, b, c are in A.P. $\Rightarrow \frac{a-b}{b-c} = \frac{a}{a}$
\n(iii) If a, b, c are in G.P. $\Rightarrow \frac{a-b}{b-c} = \frac{a}{b}$

MATHS FOR JEE MAINS & ADVANCED

1 If
$$
\frac{1}{a} + \frac{1}{c} + \frac{1}{a-b} + \frac{1}{c-b} = 0
$$
, prove that a, b, c are in H.P, or b = a + c
\n**1** We have $\frac{1}{a} + \frac{1}{c} + \frac{1}{a-b} + \frac{1}{c-b} = 0$,
\n $\Rightarrow \frac{a+c}{ac} + \frac{c-b+a-b}{(a-b)(c-b)} \Rightarrow \frac{a+c}{ac} + \frac{(a+c)-2b}{ac-b(a+c)+b^2} = 0$
\nLet $a+c=1$
\n $\therefore \frac{\lambda}{ac} + \frac{\lambda-2b}{ac-b\lambda+b^2} = 0$
\n $\Rightarrow \frac{ac\lambda-b\lambda^2+b^2\lambda+ac\lambda-2abc}{ac(ac-b\lambda+b^2)} = 0$
\n $\Rightarrow 2ac1-b1^2+b^21-2abc = 0$
\n $\Rightarrow 2ac(1-b)-b1(1-b) = 0 \Rightarrow (2ac-b1)(1-b) = 0$
\n $\Rightarrow 1=b$ or $\lambda = \frac{2ac}{b}$
\n $\Rightarrow a+c=b$ or $a+c=\frac{2ac}{b}$ ($\because a+c=1$)
\n $\Rightarrow a+c=b$ or $b=\frac{2ac}{a+c}$
\n $\therefore a, b, c$ are in H.P. or $a+c=b$.

Ex. If mth term of H.P. is n, while nth term is m, find its $(m + n)^{th}$ term.

Sol. Given $T_m = n$ or $\frac{1}{a + (m-1)d} = n$; where a is the first term and d is the common difference of the corresponding A.P.

so
$$
a + (m-1)d = \frac{1}{n}
$$

and $a + (n-1)d = \frac{1}{m}$ \Rightarrow $(m-n)d = \frac{m-n}{mn}$
or $d = \frac{1}{mn}$ \Rightarrow $(m-n)d = \frac{m-n}{mn}$
Hence $T_{(m+n)} = \frac{1}{a + (m+n-1)d} = \frac{mn}{1 + m + n - 1} = \frac{mn}{m+n}$.

MEANS

(a) Arithmetic Mean (A.M.)

If three terms are in A.P. then the middle term is called the A.M. between the other two, so if a, b, c are in A.P., b is A.M. of a & c. So A.M. of a and $c = \frac{a + c}{2} = b$.

n-Arithmetic Means Between two Numbers

If a,b be any two given numbers & a, A₁, A₂, ..., A_n, b are in AP, then A₁, A₂, ..., A_n are the 'n' A.M's between a & b then. $A_1 = a + d$, $A_2 = a + 2d$,......, $A_n = a + nd$ or $b - d$, where $d = \frac{b - a}{n + 1}$ *n* \Rightarrow $A_1 = a + \frac{}{n+1}$ $= a + \frac{b-1}{a+1}$ $^{+}$ $A_1 = a + \frac{b - a}{a}$ $\frac{b-a}{n+1}$, $A_2 = a + \frac{2(b-a)}{n+1}$ 1 $= a + \frac{2(b-1)}{2(a-1)}$ $\ddot{}$ $A_2 = a + \frac{2(b-a)}{n+1}$,.......

144

Sum of n A.M's inserted between a $\&$ b is equal to n times the single A.M. between

a & b i.e. $\sum_{r=1}^{n} A_r =$ $\sum_{r=1}^{n} A_r = nA$ where A is the single A.M. between a & b.

Ex. Insert 20 A.M. between 2 and 86.

Sol. Here 2 is the first term and 86 is the
$$
22^{\text{nd}}
$$
 term of A.P. so $86 = 2 + (21)d$

 \Rightarrow d=4

so the series is 2, 6, 10, 14,......., 82, 86

 \therefore required means are 6, 10, 14,..., 82.

Ex. Between two numbers whose sum is $\frac{13}{6}$, an even number of A.M.s is inserted, the sum of these means exceeds their number by unity. Find the number of means.

Sol. Let a and b be two numbers and $2n$ A.M.s are inserted between a and b, then

$$
\frac{2n}{2} (a+b) = 2n + 1.
$$

\n
$$
n \left(\frac{13}{6}\right) = 2n + 1.
$$

\n⇒ $n = 6.$
\n∴ Number of means = 12.

(b) Geometric Mean (G.M.)

 \Rightarrow

If a, b, c are in G.P., then b is the G.M. between a & c, $b^2 = ac$. So G.M. of a and $c = \sqrt{ac} = b$

n-Geometric Means Between two Numbers

If a, b are two given positive numbers & a, G_1, G_2, \ldots, G_n , b are in G.P. Then $G_1, G_2, G_3, \ldots, G_n$ are 'n' G.Ms between a & b.

 $G_1 = a(b/a)^{1/n+1}$, $G_2 = a(b/a)^{2/n+1}$,, $G_n = a(b/a)^{n/n+1}$ = ar, = ar2 , = arn $=$ arⁿ = b/r, where $r = (b/a)^{1/n+1}$

The product of n G.M.s between a $\&$ b is equal to the nth power of the single G.M. between a $\&$ b i.e. n $\prod_{r=1}^{n} G_r = (\sqrt{ab})^n = G^n$, where G is the single G.M. between a & b.

Ex. Insert 4 G.M.s between 2 and 486.

Sol. Common ratio of the series is given by $r =$ b) $\frac{1}{n+1}$ $\left(\frac{b}{a}\right)^{n+1} = (243)^{1/5} = 3$ Hence four G.M.s are 6, 18, 54, 162.

(c) Harmonic Mean (H.M.)

If a, b, c are in H.P., then b is H.M. between a & c. So H.M. of a and $c = \frac{2}{\sqrt{2}}$ $^{+}$ *ac* $\frac{1}{a+c}$ = b. n-Harmonic Means Between two Numbers

a, H₁, H₂, H₃,......., H_n, b \rightarrow H.P

$$
\frac{1}{a}, \frac{1}{H_1}, \frac{1}{H_2}, \frac{1}{H_3}, \dots, \frac{1}{H_n}, \frac{1}{b} \to A.P.
$$
\n
$$
\frac{1}{b} = \frac{1}{a} + (n+1)D \qquad \Rightarrow \qquad D = \frac{\frac{1}{b} - \frac{1}{a}}{n+1}
$$
\n
$$
\frac{1}{H_n} = \frac{1}{a} + n \left(\frac{\frac{1}{b} - \frac{1}{a}}{n+1} \right)
$$

Ex. Insert 4 H.M between $\frac{2}{3}$ and $\frac{2}{13}$.

Sol. Let 'd' be the common difference of corresponding A.P..

RELATION BETWEEN A.M. , G.M. , H.M.

(i) If A, G, H are respectively A.M., G.M., H.M. between a $\&$ b both being positive, then $G^2 = AH$ (i.e. A, G, H are in G.P.) and $A \ge G \ge H$.

$A.M. \ge G.M. \ge H.M.$

Let $a_1, a_2, a_3, \dots, a_n$ be n positive real numbers, then we define their

A.M. =
$$
\frac{a_1 + a_2 + a_3 + \dots + a_n}{n}
$$
, their
\nG.M. = $(a_1 a_2 a_3 + \dots + a_n)^{1/n}$ and their
\nH.M. = $\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}$.

It can be shown that A.M. \ge G.M. \ge H.M. and equality holds at either places iff $a_1 = a_2 = a_3 = \dots = a_n$

146

Ex. The A.M. of two numbers exceeds the G.M. by $\frac{3}{2}$ and the G.M. exceeds the H.M. by $\frac{6}{5}$; find the numbers. Sol. Let the numbers be a and b, now using the relation

$$
G^{2} = AH = \left(G + \frac{3}{2}\right) \left(G - \frac{6}{5}\right) = G^{2} + \frac{3}{10} G - \frac{9}{5}
$$

\n
$$
\Rightarrow \qquad G = 6
$$

\ni.e. $ab = 36$
\nalso $a + b = 15$

Hence the two numbers are 3 and 12.

Ex. If $2x^3 + ax^2 + bx + 4 = 0$ (a and b are positive real numbers) has 3 real roots, then prove that $a + b \ge 6(2^{1/3} + 4^{1/3})$.

Sol. Let a, b, g be the roots of $2x^3 + ax^2 + bx + 4 = 0$. Given that all the coefficients are positive, so all the roots will be negative.

Let
$$
a_1 = -a
$$
, $a_2 = -b$, $a_3 = -g$
\n $a_1a_2 + a_2a_3 + a_3a_1 = \frac{b}{2}$
\n $a_1a_2a_3 = 2$
\nApplying $AM \ge GM$, we have
\n
$$
\frac{\alpha_1 + \alpha_2 + \alpha_3}{3} \ge (\alpha_1\alpha_2\alpha_3)^{1/3} \implies a \ge 6 \times 2^{1/3}
$$
\nAlso
\n
$$
\frac{\alpha_1\alpha_2 + \alpha_2\alpha_3 + \alpha_1\alpha_3}{3} > (\alpha_1\alpha_2\alpha_3)^{2/3} \implies b^3 6 \times 4^{1/3}
$$
\nTherefore $a + b \ge 6(2^{1/3} + 4^{1/3})$.
\nEx. If $a, b, c > 0$, prove that $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \ge 3$
\nSoI. Using the relation A.M. $\ge GM$, we have
\n
$$
\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \ge \left(\frac{a}{b} \cdot \frac{b}{c} \cdot \frac{c}{a}\right)^{\frac{1}{3}} \implies \frac{a}{b} + \frac{b}{c} + \frac{c}{a} \ge 3
$$

ARITHMETICO - GEOMETRIC SERIES

A series, each term of which is formed by multiplying the corresponding term of an A.P. & G.P. is called the Arithmetico-Geometric Series, e.g. $1+3x+5x^2+7x^3+...$

Here $1, 3, 5, \dots$ are in A.P. & 1, x, $x^2, x^3 \dots$ are in G.P.

(a) Sum of n terms of an Arithmetico-Geometric Series

Let $S_n = a + (a + d)r + (a + 2d)r^2 + \dots + [a + (n - 1)d]r^{n-1}$

then
$$
S_n = \frac{a}{1-r} + \frac{dr(1-r^{n-1})}{(1-r)^2} - \frac{[a+(n-1)d] \ r^n}{1-r}, \ r \neq 1
$$

(b) Sum of n terms of an Arithmetico-Geometric Series when $n \to \infty$

If $0 < |r| < 1$ & $n \to \infty$, then $\lim_{n \to \infty} r^n = 0$, $S_{\infty} = \frac{a}{1-r} + \frac{dr}{(1-r)^2}$

Ex. Evaluate $1 + 2x + 3x^2 + 4x^3 + \dots$ upto infinity, where $|x| < 1$.

Sol. Let
$$
S = 1 + 2x + 3x^2 + 4x^3 + \dots
$$

\n $xS = x + 2x^2 + 3x^3 + \dots$
\n(i) - (ii) \Rightarrow (1 - x) $S = 1 + x + x^2 + x^3 + \dots$
\n \dots
\n(ii)

or
$$
S = \frac{}{(1-x)^2}
$$

SIGMA NOTATIONS (Σ) **Properties**

(a)
$$
\sum_{r=1}^{n} (a_r \pm b_r) = \sum_{r=1}^{n} a_r \pm \sum_{r=1}^{n} b_r
$$
 (b)
$$
\sum_{r=1}^{n} k a_r = k \sum_{r=1}^{n} a_r
$$

(c)
$$
\sum_{r=1}^{n} k = nk
$$
; where k is a constant.

148

Some Results

(f)
$$
\sum_{r=1}^{n} 2r = n(n+1)
$$
 (sum of first n even natural numbers)

If nth term of a sequence is given by $T_n = an^3 + bn^2 + cn + d$ where a, b, c, d are constants, then sum of n terms $S_n = ST_n = aSn^3 + bSn^2 + cSn + Sd$

Ex. Find the sum of the series to n terms whose general term is $2n + 1$. Sol. $\Sigma_n = \Sigma T_n = \Sigma (2n + 1)$ $= 2\Sigma n + \Sigma 1$ $=\frac{2(n+1) n}{2}$ $\frac{+1}{2}$ + n = n² + 2n Ex. Sum up to 16 terms of the series $\frac{1^3}{1} + \frac{1^3 + 2^3}{1 + 3} + \frac{1^3 + 2^3 + 3^3}{1 + 3 + 5} + \dots$ is Sol. $1^3 + 2^3 + 3^3 + \dots + n^3$ $t_n = \frac{1^3 + 2^3 + 3^3 + \dots + n^3}{1 + 3 + 5 + \dots (2n - 1)}$ $(n+1)$ $\{2+2(n-1)\}\$ $(n+1)$ $(n+1)$ 2 $n^2 (n+1)^2$ 2 2 $\left(\frac{1}{n}\right)^2$ $n^2(n+1)$ $\frac{2}{2}$ $\frac{1}{2}$ $\frac{4}{4}$ $\frac{1}{2}$ $\frac{(n+1)}{2}$ $\frac{n}{2} \{2+2(n-1)\}$ $\frac{n^2}{2}$ 4 $=\frac{\left\{\frac{n(n+1)}{2}\right\}^2}{\frac{n^2(n+1)^2}{2}}=\frac{n^2(n+1)^2}{\frac{4}{2}}=\frac{(n+1)^2}{2}$ $+2(n \left(n+1\right)\left(n+1\right)$ $n^2(n)$ *n* $\frac{n}{2}$ {2+2(n-1)} n $\binom{2}{1}$ $\binom{n}{1}$ $=\frac{n^2}{4}+\frac{n}{2}+\frac{1}{4}$

$$
\therefore S_n = \Sigma t_n = \frac{1}{4} \Sigma n^2 + \frac{1}{2} \Sigma n + \frac{1}{4} \Sigma 1 = \frac{1}{4} \cdot \frac{n(n+1)(2n+1)}{6} + \frac{1}{2} \cdot \frac{n(n+1)}{2} + \frac{1}{4} \cdot n
$$

$$
\therefore S_{16} = \frac{16.17.33}{24} + \frac{16.17}{4} + \frac{16}{4} = 446
$$

Ex. Find the value of the expression
$$
\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1
$$

Sol.
$$
\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1 = \sum_{i=1}^{n} \sum_{j=1}^{i} j
$$

$$
= \sum_{i=1}^{n} \frac{i(i+1)}{2} = \frac{1}{2} \left[\sum_{i=1}^{n} i^{2} + \sum_{i=1}^{n} i \right]
$$

$$
= \frac{1}{2} \left[\frac{n (n+1) (2n+1)}{6} + \frac{n (n+1)}{2} \right]
$$

$$
= \frac{n (n+1)}{12} [2n+1+3] = \frac{n (n+1) (n+2)}{6}.
$$

METHOD OF DIFFERENCE

Some times the nth term of a sequence or a series can not be determined by the method, we have discussed earlier.

So we compute the difference between the successive terms of given sequence for obtained the nth terms.

If $T_1, T_2, T_3, \ldots, T_n$ are the terms of a sequence then some times the terms $T_2 - T_1, T_3 - T_2, \ldots, C$ constitute an AP/GP. nth term of the series is determined & the sum to n terms of the sequence can easily be obtained.

Method of Difference for Finding nth Term

Let u_1, u_2, u_3, \ldots be a sequence, such that $u_2 - u_1, u_3 - u_2, \ldots$ is either an A.P. or a G.P. then nth term u_n of this sequence is obtained as follows

S = u1 + u2 + u3 + + un(i) S = u1 + u2 + + un–1 + un(ii) (i) $-$ (ii) \implies $u_n = u_1 + (u_2 - u_1) + (u_3 - u_2) + \dots + (u_n - u_{n-1})$

Where the series $(u_2 - u_1) + (u_3 - u_2) + \dots + (u_n - u_{n-1})$ is

either in A.P. or in G.P. then we can find u_n .

So sum of series $S =$ n $\sum_{r=1}$ ^ur u $\sum_{r=1}$

Case - I

(a) If difference series are in A.P., then

Let $T_n = an^2 + bn + c$, where a, b, c are constant

- (b) If difference of difference series are in A.P.
	- Let $T_n = an^3 + bn^2 + cn + d$, where a, b, c, d are constant

Case - II

(a) If difference are in G.P., then

Let $T_n = ar^n + b$, where r is common ratio & a, b are constant

(b) If difference of difference are in G.P., then

Let $T_n = ar^n + bn + c$, where r is common ratio & a, b, c are constant

Determine constant by putting $n = 1, 2, 3, \dots$ n and putting the value of T_1, T_2, T_3, \dots and sum of series $(S_n) = \sum T_n$

Ex. Find the sum to n-terms $3 + 7 + 13 + 21 + ...$

$$
\mathbf{S} \mathbf{a} \mathbf{I}
$$

Sol. Let
$$
S=3+7+13+21+........+T_{n}
$$
(i)
\n $S = 3+7+13+........+T_{n-1}+T_{n}$ (ii)
\n(i) – (ii)
\n $\Rightarrow T_{n} = 3+4+6+8+........+ (T_{n}-T_{n-1})$
\n $= 3 + \frac{n-1}{2} [8 + (n-2)2]$
\n $= 3 + (n-1)(n+2)$
\n $= n^{2} + n + 1$
\nHence $S = \sum (n^{2} + n + 1)$
\n $= \sum n^{2} + \sum n + \sum 1$
\n $= \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} + n = \frac{n}{3} (n^{2} + 3n + 5)$

Method of Difference for Finding s_n

If possible express rth term as difference of two terms as $t_r = \pm (f(r) - f(r \pm 1))$. This can be explained with the help of examples given below.

$$
t_1 = f(1) - f(0),
$$

\n
$$
t_2 = f(2) - f(1),
$$

\n
$$
\vdots \qquad \vdots
$$

\n
$$
t_n = f(n) - f(n-1)
$$

\n
$$
S_n = f(n) - f(0)
$$

Ex. Find the sum of n-terms of the series $1.2 + 2.3 + 3.4 + \dots$

Sol. Let T_r be the general term of the series

So
$$
T_r = r(r+1)
$$
.

 \Rightarrow

To express $t_r = f(r) - f(r-1)$ multiply and divide t_r by $[(r+2) - (r-1)]$

So
$$
T_r = \frac{r}{3} (r+1) [(r+2) - (r-1)]
$$

\n
$$
= \frac{1}{3} [r(r+1)(r+2) - (r-1)r(r+1)].
$$
\nLet $f(r) = \frac{1}{3} r(r+1)(r+2)$
\nSo $T_r = [f(r) - f(r-1)].$
\nNow $S = \sum_{r=1}^{n} T_r = T_1 + T_2 + T_3 + \dots + T_n$
\n
$$
T_1 = \frac{1}{3} [1, 2 \cdot 3 - 0]
$$
\n
$$
T_2 = \frac{1}{3} [2 \cdot 3 \cdot 4 - 1 \cdot 2 \cdot 3]
$$
\n
$$
T_3 = \frac{1}{3} [3 \cdot 4 \cdot 5 - 2 \cdot 3 \cdot 4]
$$
\n
$$
\vdots
$$
\n
$$
T_n = \frac{1}{3} [n(n+1)(n+2) - (n-1)n(n+1)]
$$
\n
$$
\therefore S = \frac{1}{3} n(n+1)(n+2)
$$

Hence sum of series is $f(n) - f(0)$.

MATHS FOR JEE MAINS & ADVANCED

Ex. Find the nth term and the sum of n term of the series $2 + 12 + 36 + 80 + 150 + 252 + \dots$

Sol. Let $S = 2 + 12 + 36 + 80 + 150 + 252 + \dots + T_n$

$$
S = 2 + 12 + 36 + 80 + 150 + 252 + \dots + T_{n-1} + T_n
$$
(ii)

$$
(i) - (ii)
$$

$$
\Rightarrow \qquad T_n = 2 + 10 + 24 + 44 + 70 + 102 + \dots + (T_n - T_{n-1}) \qquad \dots \text{(iii)}
$$

$$
T_{n} = 2 + 10 + 24 + 44 + 70 + 102 + \dots + (T_{n-1} - T_{n-2}) + (T_{n} - T_{n-1})
$$
(iv)

 $(iii) - (iv)$

 \Rightarrow $T_n - T_{n-1} = 2 + 8 + 14 + 20 + 26 + \dots$

$$
= \frac{n}{2} [4 + (n-1) 6] = n [3n - 1] \Rightarrow T_n - T_{n-1} = 3n^2 - n
$$

 \therefore general term of given series is $\sum (T_n - T_{n-1}) = \sum (3n^2 - n) = n^3 + n^2$. Hence sum of this series is

$$
S = \sum n^3 + \sum n^2 = \frac{n^2(n+1)^2}{4} + \frac{n(n+1)(2n+1)}{6} = \frac{n(n+1)}{12} (3n^2 + 7n + 2)
$$

$$
= \frac{1}{12}n(n+1)(n+2)(3n+1)
$$

Ex If
$$
\sum_{r=1}^{n} T_r = \frac{n}{8}(n+1)(n+2)(n+3)
$$
, then find $\sum_{r=1}^{n} \frac{1}{T_r}$.

$$
Sol. \tT_n = S_n - S_{n-1}
$$

$$
= \sum_{r=1}^{n} T_r - \sum_{r=1}^{n-1} T_r = \frac{n(n+1)(n+2)(n+3)}{8} - \frac{(n-1)n(n+1)(n+2)}{8} = \frac{n(n+1)(n+2)}{8} [(n+3) - (n-1)]
$$

$$
T_n = \frac{n(n+1)(n+2)}{8}(4) = \frac{n(n+1)(n+2)}{2}
$$

\n
$$
\Rightarrow \qquad \frac{1}{T_n} = \frac{2}{n(n+1)(n+2)} = \frac{(n+2)-n}{n(n+1)(n+2)} = \frac{1}{n(n+1)} - \frac{1}{(n+1)(n+2)} \qquad \dots (i)
$$

Let
$$
V_n = \frac{1}{n(n+1)}
$$

$$
\therefore \qquad \frac{1}{T_n} = V_n - V_{n+1}
$$

Putting $n = 1, 2, 3, ...$ n

$$
\Rightarrow \frac{1}{T_1} + \frac{1}{T_2} + \frac{1}{T_3} + \dots + \frac{1}{T_n} = (V_1 - V_{n+1})
$$

$$
\Rightarrow \qquad \sum_{r=1}^{n} \frac{1}{T_r} = \frac{n^2 + 3n}{2(n+1)(n+2)}
$$

152

TIPS & FORMULAS

1. Arithmetic Progression (AP)

AP is sequence whose terms increase or decrease by a fixed number. This fixed number is called the Common Difference. If 'a' is the first term $\&$ 'd' is the common difference, then AP can be written as

 $a, a+d, a+2d, \ldots a+(n-1)d, \ldots$

(a) nth term of this AP T_n = a + (n – 1)d, where $d = T_n - T_{n-1}$

(b) The sum of the first n terms : Sn = $\frac{n}{2}$ [2a + (n – 1)d] = $\frac{n}{2}$ [a + ℓ] where ℓ is the last term.

(c) Also nth term
$$
T_n = S_n - S_{n-1}
$$

Note

- (i) Sum of first n terms of an A.P. is of the form $An^2 + Bn$ i.e. a quadratic expression in n, in such case the common difference twice the coefficient of n^2 i.e. $2A$
- (ii) nth term of an A.P. is of the form $A_n + B$ i.e. a linear expression in n, in such case the coefficient of n is the common difference of A.P. i.e. A
- (iii) Three numbers is AP can be taken as $a d$, a, $a + d$; four numbers in AP can be taken as $a 3d$, $a d$, $a + d$, $a + 3d$ five numbers in AP are $a - 2d$, $a - d$, a , $a + d$, $a + 2d$ & six terms in AP are $a - 5d$, $a - 3d$, $a - d$, $a + d$, $a + 3d$, $a + 5d$ etc.
- (iv) If for A.P. pth term is q, qth term is p, then rth term is = p + q r & (P + q)th term is 0.

2. Geometric Progression (GP)

GP is a sequence of numbers whose first term is non-zero $\&$ each of the succeeding terms is equal to the preceeding terms multiplied by a constant. Thus in a GP the ratio of successive terms is constant. This constant factor is called the COMMON RATIO of the series $\&$ is obtained by dividing any term by the immediately previous term.

Therefore a, ar , ar^2 , ar^3 , ar^4 ,........... is a GP with 'a' as the first term & 'r' as common ratio.

(a) nth term $T_n = a r^{n-1}$

- **(b)** Sum of the first n terms $S_n = \frac{a(r^n 1)}{r 1}$ $r - 1$ - $\frac{1}{-1}$, if $r \neq 1$
- (c) Sum of infinite GP when $|r| < 1$ & $n \to \infty$, $r^n \to 0$ S_∞ = $\frac{a}{1-r}$; $|r| < 1$
- (d) Any 3 consecutive terms of a GP can be taken as a/r, a, ar ; any 4 consecutive terms of a GP can be taken as a/r3, a/r , ar, ar3 & so on.
- (e) If a, b, c are in GP \Rightarrow b² = ac \Rightarrow loga, logb, logc, are in A.P.

3. Harmonic Progression (HP)

A sequence is said to HP if the reciprocals of its terms are in AP. If the sequence $a_1, a_2, a_3, \ldots, a_n$ is an HP then $1/a_1$, $1/a_2$,...........1/a_n is an AP & converse. Here we do not have the formula for the sum of the n terms of an HP. The general

form of a harmonic progression is $\frac{1}{a}$, $\frac{1}{a+d}$, $\frac{1}{a+2d}$, $\frac{1}{a+(n-1)d}$

Note: No term of any H.P can be zero. If a, b, c are in HP \Rightarrow b = $\frac{2ac}{a+c}$ or $\frac{a}{c} = \frac{a-b}{b-c}$ $\frac{a}{c} = \frac{a - b}{b - c}$

4. Means

(a) Arithmetic Mean (AM)

If three terms are in AP then the middle term is called the AM between the other two, so if a, b, c are in AP, b is AM of a & c.

n-Arithmetic Means Between two Numbers

If a, b are any two given numbers & a, A_1 , A_2 ,...... A_n , b are in AP then A_1 , A_2 ,..... A_n are the n AM's between a & b, then

 $A_1 = a + d$, $A_2 = a + 2d$,....., $A_n = a + nd$, where $d = \frac{b - a}{n + 1}$ $n + 1$ - $^{+}$

Note Sum of n AM's inserted between a & b is equal to n times the single AM between a & b i.e. $\sum_{n=1}^{\infty}$ $\sum_{r=1}^{I}\mathbf{A}_r$ $A_r = nA$ $\sum_{r=1} A_r = nA$ where A is

the single AM between a & b.

(b) Geometric Mean (GM)

If a, b, c are in GP, b is the GM between a & c, $b^2 = ac$, therefore $b = \sqrt{ac}$

n-Geometric Means Between two Numbers

If a, b are two given positive numbers $\&$ a, $G_1, G_2,.....G_n$, b are in GP then $G_1, G_2, G_3,.....G_n$ are n GMs between a $\&$ b. $G_1 = ar, G_2 = ar_2, \dots G_n = ar_n$, where $r = (b/a)1^{n+1}$

Note The product of n GMs between a & b i.e. n $\prod_{r=1}^r$ G $\prod_{r=1} G_r = (G)^n$ where G is the single GM between a & b

(c) Harmonic Mean (HM)

If a, b, c are in HP, then b is HM between a & c, then $b = \frac{2ac}{a+c}$.

Important Note

- (i) If A, G, H are respectively AM, GM, HM between two positive number a $\&$ b then
	- (a) $G^2 = AH (A, G, H$ constitute a GP)
	- (b) $A \ge G \ge H$
	- (c) $A = G = H \implies a = b$

(ii) Let a_1, a_2, \ldots, a_n be n positive real numbers, then we define their arithmetic mean (A) , geometric mean (G) and

harmonic mean (**H**) as
$$
A = \frac{a_1 + a_2 + \dots + a_n}{n}
$$
, $G = (a_1, a_2, \dots, a_n)^{1/n}$ and $H = \frac{n}{\left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \dots + \frac{1}{a_n}\right)}$

It can be shown that $A \ge G \ge H$. Moreover equality holds at either place if and only if $a_1 = a_2 = = a_n$

5. Arithmetico – Geometric Series Sum of First n terms of an Arithmetico-Geometric Series

Let
$$
S_n = a + (a + d)r + (a + 2d)r^2 + \dots + [a + (n-1)d]r^{n-1}
$$
 then $S_n = \frac{a}{1-r} + \frac{dr(1-r^{n-1})}{(1-r)^2} - \frac{[a + (n-1)d]}{1-r}, r \neq 1$

Sum to Infinity

If
$$
|r| < 1
$$
 & $n \to \infty$ then $\lim_{n \to \infty} r^n = 0 \Rightarrow S_\infty = \frac{a}{1-r} + \frac{dr}{(1-r)^2}$

6. Sigma Notations Theorems

(a)
$$
\sum_{r=1}^{n} (a_r \pm b_r) = \sum_{r=1}^{n} a_r \pm \sum_{r=1}^{n} b_r
$$
 (b) $\sum_{r=1}^{n} ka_r = k \sum_{r=1}^{n} a_r$ (c) $\sum_{r=1}^{n} k = nk$; where k is a constant.

7. Results

- (a) $\sum_{r=1}^{n} r = \frac{n(n+1)}{2}$ (sum of the first n natural numbers)
- **(b)** $\sum_{r=1}^{-n} r^2 = \frac{n(n+1)(2n+1)}{6}$ $\sum_{r=1}^{-n} r^2 = \frac{n(n+1)(2n+1)}{6}$ (sum of the squares of the first n natural numbers)
- (c) $\sum_{r=1}^{n} r^3 = \frac{n^2 (n+1)^2}{4} = \left[\sum_{r=1}^{n} r \right]^2$ (sum of the cubes of the first n natural numbers)

(d)
$$
\sum_{r=1}^{n} r^4 = \frac{n}{30} (n+1) (2n+1) (3n^2 + 3n - 1)
$$

8. Method of Difference

Some times the nth term of a sequence or a series can not be determined by the method, we have discussed earlier. So we compute the difference between the successive terms of given sequence for obtained the nth terms. If $T_1, T_2, T_3, \ldots, T_n$ are the terms of a sequence then some times the terms $T_2 - T_1, T_3 - T_2, \ldots, T_n$ constitute an AP/GP. nth term of the series is determined & the sum to n terms of the sequence can easily be obtained.

